Skip to content

HierarchicalProphet

HierarchicalProphet

Bases: ExogenousEffectMixin, BaseBayesianForecaster

A class that represents a Bayesian hierarchical time series forecasting model based on the Prophet algorithm.

This class forecasts all series in a hierarchy at once, using a MultivariateNormal as the likelihood function, and LKJ priors for the correlation matrix.

This class may be interesting if you want to fit shared coefficients across series. By default, all coefficients are obtained exclusively for each series, but this can be changed through the shared_coefficients parameter.

Parameters:

Name Type Description Default
changepoint_interval int

The number of points between each potential changepoint.

25
changepoint_range float

Proportion of the history in which trend changepoints will be estimated. If a float between 0 and 1, the range will be that proportion of the history. If an int, the range will be that number of points. A negative int indicates number of points counting from the end of the history.

0.8
changepoint_prior_scale float

Parameter controlling the flexibility of the automatic changepoint selection.

0.1
offset_prior_scale float

Scale parameter for the prior distribution of the offset. Default is 0.1.

0.1
capacity_prior_scale float

Scale parameter for the capacity prior. Defaults to 0.2.

0.2
capacity_prior_loc float

Location parameter for the capacity prior. Defaults to 1.1.

1.1
trend str

Type of trend. Either "linear" or "logistic". Defaults to "linear".

'linear'
feature_transformer BaseTransformer or None

A transformer to preprocess the exogenous features. Defaults to None.

None
exogenous_effects List[AbstractEffect]

A list defining the exogenous effects to be used in the model.

None
default_effect AbstractEffect

The default effect to be used when no effect is specified for a variable.

None
shared_features list

List of shared features across series. Defaults to an empty list.

None
mcmc_samples int

Number of MCMC samples to draw. Defaults to 2000.

2000
mcmc_warmup int

Number of warmup steps for MCMC. Defaults to 200.

200
mcmc_chains int

Number of MCMC chains. Defaults to 4.

4
inference_method str

Inference method to use. Either "map" or "mcmc". Defaults to "map".

'map'
optimizer_name str

Name of the optimizer to use. Defaults to "Adam".

'Adam'
optimizer_kwargs dict

Additional keyword arguments for the optimizer. Defaults to {"step_size": 1e-4}.

None
optimizer_steps int

Number of optimization steps. Defaults to 100_000.

100000
noise_scale float

Scale parameter for the noise. Defaults to 0.05.

0.05
correlation_matrix_concentration float

Concentration parameter for the correlation matrix. Defaults to 1.0.

1.0
rng_key PRNGKey

Random number generator key. Defaults to random.PRNGKey(24).

None
Source code in src/prophetverse/sktime/multivariate.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
class HierarchicalProphet(ExogenousEffectMixin, BaseBayesianForecaster):
    """A class that represents a Bayesian hierarchical time series forecasting model based on the Prophet algorithm.

    This class forecasts all series in a hierarchy at once, using a MultivariateNormal as the likelihood function, and
    LKJ priors for the correlation matrix.

    This class may be interesting if you want to fit shared coefficients across series. By default, all coefficients are
    obtained exclusively for each series, but this can be changed through the `shared_coefficients` parameter.

    Args:
        changepoint_interval (int): The number of points between each potential changepoint.
        changepoint_range (float): Proportion of the history in which trend changepoints will be estimated.
                                   If a float between 0 and 1, the range will be that proportion of the history.
                                   If an int, the range will be that number of points. A negative int indicates number of points
                                   counting from the end of the history.
        changepoint_prior_scale (float): Parameter controlling the flexibility of the automatic changepoint selection.
        offset_prior_scale (float): Scale parameter for the prior distribution of the offset. Default is 0.1.
        capacity_prior_scale (float): Scale parameter for the capacity prior. Defaults to 0.2.
        capacity_prior_loc (float): Location parameter for the capacity prior. Defaults to 1.1.
        trend (str): Type of trend. Either "linear" or "logistic". Defaults to "linear".
        feature_transformer (BaseTransformer or None): A transformer to preprocess the exogenous features. Defaults to None.
        exogenous_effects (List[AbstractEffect]): A list defining the exogenous effects to be used in the model.
        default_effect (AbstractEffect): The default effect to be used when no effect is specified for a variable.
        shared_features (list): List of shared features across series. Defaults to an empty list.
        mcmc_samples (int): Number of MCMC samples to draw. Defaults to 2000.
        mcmc_warmup (int): Number of warmup steps for MCMC. Defaults to 200.
        mcmc_chains (int): Number of MCMC chains. Defaults to 4.
        inference_method (str): Inference method to use. Either "map" or "mcmc". Defaults to "map".
        optimizer_name (str): Name of the optimizer to use. Defaults to "Adam".
        optimizer_kwargs (dict): Additional keyword arguments for the optimizer. Defaults to {"step_size": 1e-4}.
        optimizer_steps (int): Number of optimization steps. Defaults to 100_000.
        noise_scale (float): Scale parameter for the noise. Defaults to 0.05.
        correlation_matrix_concentration (float): Concentration parameter for the correlation matrix. Defaults to 1.0.
        rng_key (jax.random.PRNGKey): Random number generator key. Defaults to random.PRNGKey(24).
    """

    _tags = {
        "scitype:y": "univariate",  # which y are fine? univariate/multivariate/both
        "ignores-exogeneous-X": False,  # does estimator ignore the exogeneous X?
        "handles-missing-data": False,  # can estimator handle missing data?
        "y_inner_mtype": [
            'pd.DataFrame',
            "pd-multiindex",
            "pd_multiindex_hier",
        ],
        "X_inner_mtype": [
            'pd.DataFrame',
            "pd-multiindex",
            "pd_multiindex_hier",
        ],  # which types do _fit, _predict, assume for X?
        "requires-fh-in-fit": False,  # is forecasting horizon already required in fit?
        "X-y-must-have-same-index": False,  # can estimator handle different X/y index?
        "enforce_index_type": None,  # index type that needs to be enforced in X/y
        "capability:pred_int": False,  # does forecaster implement proba forecasts?
        "fit_is_empty": False,
        "capability:pred_int": True,
        "capability:pred_int:insample": True,
    }

    def __init__(
        self,
        changepoint_interval=25,
        changepoint_range=0.8,
        changepoint_prior_scale=0.1,
        offset_prior_scale=0.1,
        capacity_prior_scale=0.2,
        capacity_prior_loc=1.1,
        trend="linear",
        feature_transformer: BaseTransformer = None,
        exogenous_effects=None,
        default_effect=None,
        shared_features=None,
        mcmc_samples=2000,
        mcmc_warmup=200,
        mcmc_chains=4,
        inference_method="map",
        optimizer_name="Adam",
        optimizer_kwargs=None,
        optimizer_steps=100_000,
        noise_scale=0.05,
        correlation_matrix_concentration=1.0,
        rng_key=None,
    ):

        self.changepoint_interval = changepoint_interval
        self.changepoint_range = changepoint_range
        self.changepoint_prior_scale = changepoint_prior_scale
        self.offset_prior_scale = offset_prior_scale
        self.noise_scale = noise_scale
        self.capacity_prior_scale = capacity_prior_scale
        self.capacity_prior_loc = capacity_prior_loc
        self.trend = trend
        self.shared_features = shared_features
        self.feature_transformer = feature_transformer
        self.correlation_matrix_concentration = correlation_matrix_concentration

        super().__init__(
            rng_key=rng_key,
            inference_method=inference_method,
            optimizer_name=optimizer_name,
            optimizer_kwargs=optimizer_kwargs,
            optimizer_steps=optimizer_steps,
            mcmc_samples=mcmc_samples,
            mcmc_warmup=mcmc_warmup,
            mcmc_chains=mcmc_chains,
            default_effect=default_effect,
            exogenous_effects=exogenous_effects,
        )

        self.model = multivariate_model
        self._validate_hyperparams()

    def _validate_hyperparams(self):
        """
        Validate the hyperparameters of the HierarchicalProphet forecaster.
        """
        if self.changepoint_interval <= 0:
            raise ValueError("changepoint_interval must be greater than 0.")

        if self.changepoint_prior_scale <= 0:
            raise ValueError("changepoint_prior_scale must be greater than 0.")
        if self.noise_scale <= 0:
            raise ValueError("noise_scale must be greater than 0.")
        if self.capacity_prior_scale <= 0:
            raise ValueError("capacity_prior_scale must be greater than 0.")
        if self.capacity_prior_loc <= 0:
            raise ValueError("capacity_prior_loc must be greater than 0.")
        if self.offset_prior_scale <= 0:
            raise ValueError("offset_prior_scale must be greater than 0.")
        if self.correlation_matrix_concentration <= 0:
            raise ValueError(
                "correlation_matrix_concentration must be greater than 0."
            )

        if self.trend not in ["linear", "logistic"]:
            raise ValueError('trend must be either "linear" or "logistic".')

    def _get_fit_data(self, y, X, fh):
        """
        Prepare the data for the NumPyro model.

        Args:
            y (pd.DataFrame): Training target time series.
            X (pd.DataFrame): Training exogenous variables.
            fh (ForecastingHorizon): Forecasting horizon.

        Returns:
            dict: A dictionary containing the model data.
        """

        # Handling series without __total indexes
        self.aggregator_ = Aggregator()
        self.original_y_indexes_ = y.index
        y = self.aggregator_.fit_transform(y)

        # Updating internal _y of sktime because BaseBayesianForecaster uses it to convert
        # Forecast Horizon into multiindex correcly
        self.internal_y_indexes_ = y.index

        # Convert inputs to array, including the time index
        y_bottom = loc_bottom_series(y)
        y_bottom_arrays = series_to_tensor(y_bottom)

        ## Changepoints and trend
        if self.trend == "linear":
            self.trend_model_ = PiecewiseLinearTrend(
                changepoint_interval=self.changepoint_interval,
                changepoint_range=self.changepoint_range,
                changepoint_prior_scale=self.changepoint_prior_scale,
                offset_prior_scale=self.offset_prior_scale,
                squeeze_if_single_series=False,
            )

        elif self.trend == "logistic":
            self.trend_model_ = PiecewiseLogisticTrend(
                changepoint_interval=self.changepoint_interval,
                changepoint_range=self.changepoint_range,
                changepoint_prior_scale=self.changepoint_prior_scale,
                offset_prior_scale=self.offset_prior_scale,
                capacity_prior=dist.TransformedDistribution(
                    dist.HalfNormal(self.capacity_prior_scale),
                    dist.transforms.AffineTransform(
                        loc=self.capacity_prior_loc, scale=1
                    ),
                ),
                squeeze_if_single_series=False,
            )

        elif isinstance(self.trend, TrendModel):
            self.trend_model_ = self.trend
        else:
            raise ValueError("trend must be either 'linear', 'logistic' or a TrendModel instance.")

        self.trend_model_.initialize(y_bottom)
        fh = y.index.get_level_values(-1).unique()
        trend_data = self.trend_model_.prepare_input_data(fh)

        # Exog variables

        # If no exogenous variables, create empty DataFrame
        # Else, aggregate exogenous variables and transform them
        if (X is None or X.columns.empty) and self.feature_transformer is not None:
            X = pd.DataFrame(index=y.index)
        if self.feature_transformer is not None:
            X = self.feature_transformer.fit_transform(X)
        self._has_exogenous_variables = X is not None and not X.columns.empty

        if self._has_exogenous_variables:
            shared_features = self.shared_features
            if shared_features is None:
                shared_features = []

            self.expand_columns_transformer_ = ExpandColumnPerLevel(
                X.columns.difference(shared_features).to_list()
            ).fit(X)
            X = X.loc[y_bottom.index]
            X = self.expand_columns_transformer_.transform(X)

            self._set_custom_effects(feature_names=X.columns)
            exogenous_data = self._get_exogenous_data_array(loc_bottom_series(X))

        else:
            self._exogenous_effects_and_columns = {}
            exogenous_data = {}

        self.fit_and_predict_data_ = {
            "noise_scale" : self.noise_scale,
            "trend_model" : self.trend_model_,
            "exogenous_effects": self.exogenous_effect_dict,
            "correlation_matrix_concentration": self.correlation_matrix_concentration,
            "noise_scale": self.noise_scale,
            "is_single_series" : self.n_series == 1
        }

        return dict(
            y=y_bottom_arrays,
            data=exogenous_data,
            trend_data = trend_data,

            **self.fit_and_predict_data_,
        )

    def predict_samples(self, X: pd.DataFrame, fh: ForecastingHorizon) -> np.ndarray:
        """Generate samples for the given exogenous variables and forecasting horizon.

        Args:
            X (pd.DataFrame): Exogenous variables.
            fh (ForecastingHorizon): Forecasting horizon.

        Returns:
            np.ndarray: Predicted samples.
        """
        samples = super().predict_samples(X=X, fh=fh)

        return self.aggregator_.transform(samples)

    def _get_exogenous_matrix_from_X(self, X: pd.DataFrame) -> jnp.ndarray:
        """
        Convert the exogenous variables to a NumPyro matrix.

        Args:
            X (pd.DataFrame): The exogenous variables.

        Returns:
            jnp.ndarray: The NumPyro matrix of the exogenous variables.
        """
        X_bottom = loc_bottom_series(X)
        X_arrays = series_to_tensor(X_bottom)

        return X_arrays

    def predict_samples(self, X: pd.DataFrame, fh: ForecastingHorizon) -> np.ndarray:
        """Generate samples for the given exogenous variables and forecasting horizon.

        Args:
            X (pd.DataFrame): Exogenous variables.
            fh (ForecastingHorizon): Forecasting horizon.

        Returns:
            np.ndarray: Predicted samples.
        """
        samples = super().predict_samples(X=X, fh=fh)

        return self.aggregator_.transform(samples)

    def _get_predict_data(self, X: pd.DataFrame, fh: ForecastingHorizon) -> np.ndarray:
        """Generate samples for the given exogenous variables and forecasting horizon.

        Args:
            X (pd.DataFrame): Exogenous variables.
            fh (ForecastingHorizon): Forecasting horizon.

        Returns:
            np.ndarray: Predicted samples.
        """

        fh_dates = fh.to_absolute(
            cutoff=self.internal_y_indexes_.get_level_values(-1).max()
        )
        fh_as_index = pd.Index(list(fh_dates.to_numpy()))

        if not isinstance(fh, ForecastingHorizon):
            fh = self._check_fh(fh)

        trend_data = self.trend_model_.prepare_input_data(fh_as_index)

        if self._has_exogenous_variables:
            if X is None or X.shape[1] == 0:
                idx = reindex_time_series(self._y, fh_as_index).index
                X = pd.DataFrame(index=idx)
                X = self.aggregator_.transform(X)

            X = X.loc[X.index.get_level_values(-1).isin(fh_as_index)]

            assert X.index.get_level_values(-1).nunique() == fh_as_index.nunique(), "Missing exogenous variables for some series or dates."
            if self.feature_transformer is not None:
                X = self.feature_transformer.transform(X)
            X = self.expand_columns_transformer_.transform(X)
            exogenous_data = self._get_exogenous_data_array(loc_bottom_series(X))
        else:
            exogenous_data = {}

        return dict(
            y=None,
            data=exogenous_data,
            trend_data=trend_data,
            **self.fit_and_predict_data_,
        )

    def _filter_series_tuples(self, levels: List[Tuple]) -> List[Tuple]:

        # Make it a tuple for consistency
        if not isinstance(levels[0], (tuple, list)):
            levels = [(idx,) for idx in levels]

        bottom_levels = [idx for idx in levels if idx[-1] != "__total"]
        return bottom_levels

    @property
    def n_series(self):
        """Get the number of series.

        Returns:
            int: Number of series.
        """
        if self.internal_y_indexes_.nlevels == 1:
            return 1
        return len(self._filter_series_tuples(self.internal_y_indexes_.droplevel(-1).unique().tolist()))

    @classmethod
    def get_test_params(cls, parameter_set="default"):

        return [{
            "optimizer_steps":1_000,
        }]

n_series property

Get the number of series.

Returns:

Name Type Description
int

Number of series.

predict_samples(X, fh)

Generate samples for the given exogenous variables and forecasting horizon.

Parameters:

Name Type Description Default
X DataFrame

Exogenous variables.

required
fh ForecastingHorizon

Forecasting horizon.

required

Returns:

Type Description
ndarray

np.ndarray: Predicted samples.

Source code in src/prophetverse/sktime/multivariate.py
306
307
308
309
310
311
312
313
314
315
316
317
318
def predict_samples(self, X: pd.DataFrame, fh: ForecastingHorizon) -> np.ndarray:
    """Generate samples for the given exogenous variables and forecasting horizon.

    Args:
        X (pd.DataFrame): Exogenous variables.
        fh (ForecastingHorizon): Forecasting horizon.

    Returns:
        np.ndarray: Predicted samples.
    """
    samples = super().predict_samples(X=X, fh=fh)

    return self.aggregator_.transform(samples)